admin 发表于 2023-10-18 14:16:36

红外线波长范围-红外线波长范围,红外线,波长,范围

红外光谱区的范围是多少
800纳米以上波长为红外光谱区。数字挺大的,一般用波数来表示,即一厘米内有多少波峰的数目。400到4000波数是中红外区4000到6000是近红区

红外光谱的区域划分依据是什么
远0.8~2.5微米,中2.5~25微米,外25~1000微米

红外光谱仪适用的波数范围是多少?
400到4000波数

红外光谱法的划分
通常将红外波谱区分为近红外(near-infrared),中红外(middle-infrared)和远红外(far-infrared)。区域波长范围(um)波数范围(cm-1)频率(Hz)近红外0.78-2.512800-40003.8?10-1.2?10中红外2.5-504000-2001.2?10-6.0?10远红外50-1000200-106.0?10-3.0?10常用2.5-154000-6701.2?10-2.0?10当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,产生分子振动能级和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。通过比较大量已知化合物的红外光谱,发现:组成分子的各种基团,如O-H、N-H、C-H、C=C、C=O和C?C等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。分子吸收红外辐射后,由基态振动能级(n=0)跃迁至第一振动激发态(n=1)时,所产生的吸收峰称为基频峰。因为(振动量子数的差值) △n=1时,nL=n,所以基频峰的位置(nL)等于分子的振动频率。在红外吸收光谱上除基频峰外,还有振动能级由基态(n=0)跃迁至第二激发态(n=2)、第三激发态(n=3)?,所产生的吸收峰称为倍频峰。由n = 0跃迁至n = 2时,△n = 2,则nL = 2n,即吸收的红外线谱线(nL )是分子振动频率的二倍,产生的吸收峰称为二倍频峰。下图是双原子分子的能级示意图,图中EA和EB表示不同能量的电子能级,在每个电子能级中因振动能量不同而分为若干个n = 0、1、2、3……的振动能级,在同一电子能级和同一振动能级中,还因转动能量不同而分为若干个J= 0、1、2、3……的转动能级。由于分子非谐振性质,各倍频峰并非正好是基频峰的整数倍,而是略小一些。以HCl为例:基频峰(n0→1) 2885.9 cm 最强二倍频峰(n0→2 ) 5668.0 cm 较弱三倍频峰(n0→3 ) 8346.9 cm 很弱四倍频峰(n0→4 ) 10923.1 cm 极弱五倍频峰(n0→5 ) 13396.5 cm 极弱除此之外,还有合频峰(n1+n2,2n1+n2,?),差频峰(n1-n2,2n1-n2,?)等,这些峰多数很弱,一般不容易辨认。倍频峰、合频峰和差频峰统称为泛频峰。

红外光谱主要基团相关峰的频率范围分布表
基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。1900~1200 cm-1为双键伸缩振动区。根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:
  4 000~2 500 cm-1
  氢键区
  2 500~2 000 cm-1

请问红外线在光谱中的波长范围是多少?
太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm
之间。

可见光和紫外光的波长范围的多少?
29
红外成像光谱仪现在波长可以长到多少?
红外光:大于760NM,可见光波长:400-760NM,紫外光波长:400NM以下.
红外线的波长范围:
  把能通过大气的三个波段划分为:
  近红外波段 1~3微米
  中红外波段 3~5微米
  远红外波段 8~14微米
根据红外光谱划分为:
  近红外波段 1~3微米
  中红外波段 3~40微米
  远红外波段 40~1000微米
医学领域中常常如此划分:
  近红外区 0.76~3微米
  中红外区 3~30微米
  远红外区 30~1000微米
医用红外线可分为两类:近红外线与远红外线。近红外线或称短波红外线,波长0.76~1.5微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长1.5~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。(但在实际应用中通常把2.5微波以上的红外线通称为远红外线。)

光谱中红外,紫外,可见光的光谱范围分别为多少
可见光
指能引起视觉的电磁波。可见光的波长范围在0.77~0.39微米之间。波长不同的电磁波,引起人眼的颜色感觉不同。0.77~0.622微米,感觉为红色;0.622~0.597微米,橙色;0.597~0.577微米,黄色;0.577~0.492微米,绿色;0.492~0.455微米,蓝靛色;0.455~0.39微米,紫色。
可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400到700纳米之间,但还有一些人能够感知到波长大约在380到780纳米之间的电磁波。正常视力的人眼对波长约为555纳米的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域
人眼可以看见的光的范围受大气层影响。大气层对于大部分的电磁波辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。
红外光谱
红外光谱(infrared
spectra),以波长或波数为横坐标?以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。
紫外光谱
紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱。目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm),吸收度
(absorbance)a为纵坐标作图,即得到紫外光谱(ultra
violet
spectra,简称uv)。

红外\近红外\远红外都有什么区别,一般的用途是什么?
http://www.zaoxu.com/uploadfile/imgall/18dc54564e9258d109cba9bd6edd58ccbf6d814da7.jpg

同属红外线,区别为波长不同。具体明细如下:
近红外线(NIR, IR-A DIN):波长在0.75-1.4微米,以水的吸收来定义,由于在二氧化矽玻璃中的低衰减率,通常使用在光纤通信中。在这个区域的波长对影像的增强非常敏锐。例如,包括夜视设备,像是夜视镜。
短波长红外线(SWIR, IR-B DIN):1.4-3微米,水的吸收在1,450奈米显著的增加。 1,530至1,560奈米是主导远距离通信的主要光谱区域。
中波长红外线(MWIR, IR-C DIN)也称为中红外线:波长在3-8微米。被动式的红外线追热导向飞弹技术在设计上就是使用3-5微米波段的大气窗口来工作,对飞机红外线标识的归航,通常是针对飞机引擎排放的羽流。
长波长红外线(LWIR, IR-C DIN):8-15微米。这是"热成像"的区域,在这个波段的感测器不需要其他的光或外部热源,例如太阳、月球或红外灯,就可以获得完整的热排放量的被动影像。前视性红外线(FLIR)系统使用这个区域的频谱。 ,有时也会被归类为"远红外线"
远红外线(FIR):50-1,000微米(参见远红外线雷射)。
NIR和SWIR有时被称为"反射红外线",而MWIR和LWIR有时被称为"热红外线",这是基于黑体辐射曲线的特性,典型的'热'物体,像是排气管,同样的物体通常在MW的波段会比在LW波段下来得更为明亮。
拓展资料红外线的发现
公元1666年牛顿发现光谱并测量出3,900埃~7,600埃(400nm~700nm)是可见光的波长。 1800年4月24日英国伦敦皇家学会的威廉·赫歇尔发表太阳光在可见光谱的红光之外还有一种不可见的延伸光谱,具有热效应。
他所使用的方法很简单,用一支温度计测量经过稜镜分光后的各色光线温度,由紫到红,发现温度逐渐增加,可是当温度计放到红光以外的部份,温度仍持续上升,因而断定有红外线的存在。
在紫外线的部份也做同样的测试,但温度并没有增高的反应。紫外线是1801年由RITTER用氯化银感光剂所发现。
底片所能感应的近红外线波长是肉眼所能看见光线波长的两倍,用底片可以记录到的波长上限是13,500埃,如果再加上其它特殊的设备,则最高可以达到20,000埃,再往上就必须用物理仪器侦测了。
请问红外线在光谱中的波长范围是多少?
http://www.zaoxu.com/uploadfile/imgall/180b55b319ebc4b74545a36568dffc1e178a82159c.jpg

近红外光的波长范围是780~2526纳米。近红外光分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。
近红外区域是人们最早发现的非可见光区域。属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。
由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少。

扩展资料:
近红外光谱分析技术包括定性分析和定量分析,定性分析的目的是确定物质的组成与结构,而定量分析则是为了确定物质中某些组分的含量或是物质的品质属性的值。
与常用的化学分析方法不同,近红外光谱分析法是一种间接分析技术,是用统计的方法在样品待测属性值与近红外光谱数据之间建立一个关联模型(或称校正模型,CalibrationModel)。
因此在对未知样品进行分析之前需要搜集一批用于建立关联模型的训练样品(或称校正样品,CalibrationSamples),获得用近红外光谱仪器测得的样品光谱数据和用化学分析方法(或称参考方法,Referencemethod)测得的真实数据。
参考资料:百度百科-近红外
LED的红外波长范围是多少
红外线(Infrared)又俗称红外光,是波长介乎微波与可见光之间的电磁波,其波长在760奈米(nm)至1毫米(mm)之间,是波长比红光长的非可见光,对应频率约是在430 THz到300 GHz的范围内。室温下物体所发出的热辐射多都在此波段。
红外线是在1800年由天文学家威廉·赫歇尔发现,威廉借由温度计温度的上升,发现有一种看不到的辐射,其频率低于红色光。太阳的能量中约有超过一半的能量是以红外线的方式进入地球,地球吸收及发射红外线辐射的平衡对其气候有关键性的影响。
当分子改变其旋转或振动的运动方式时,就会吸收或发射红外线。由红外线的能量可以找出分子的振动模态及其偶极矩的变化,因此在研究分子对称性及其能态时,红外线是理想的频率范围。红外线光谱学研究在红外线范围内的光子吸收及发射。
红外线可用在军事、工业、科学及医学的应用中。红外线夜视装置利用即时的近红外线影像,可以在不被查觉的情形下在夜间观察人或是动物。红外线天文学利用有感测器的望远镜穿透太空的星尘(例如分子云),检测像是行星等星体,以及检测早期宇宙留下的红移星体。红外线热显像相机可以检测隔绝系统的热损失,观查皮肤中血液流动的变化,以及电子设备的过热。红外线穿透云雾的能力比可见光强,像红外线导引常用在导弹的导航、热成像仪及夜视镜可以用在不同的应用上、红外天文学及远红外线天文学可在天文学中应用红外线的技术。
不同领域的红外线
物体通常会辐射出跨越不同波长的红外线,但是侦测器的设计通常只能接收感到兴趣的特定频谱宽度以内的辐射。结果是,红外线通常会被区分成不同波长的较小区段。
一般使用者的分类
一般使用者的分类是:
近红外线(NIR, IR-A DIN):波长在0.75-1.4微米,以水的吸收来定义,由于在二氧化硅玻璃中的低衰减率,通常使用在光纤通信中。在这个区域的波长对影像的增强非常敏锐。例如,包括夜视设备,像是夜视镜。
短波长红外线(SWIR, IR-B DIN):1.4-3微米,水的吸收在1,450奈米显著的增加。1,530至1,560奈米是主导远距离通信的主要光谱区域。
中波长红外线(MWIR, IR-C DIN)也称为中红外线:波长在3-8微米。被动式的红外线追热导向导弹技术在设计上就是使用3-5微米波段的大气窗口来工作,对飞机红外线标识的归航,通常是针对飞机引擎排放的羽流。
长波长红外线(LWIR, IR-C DIN):8-15微米。这是"热成像"的区域,在这个波段的感测器不需要其他的光或外部热源,例如太阳、月球或红外灯,就可以获得完整的热排放量的被动影像。前视性红外线(FLIR)系统使用这个区域的频谱。,有时也会被归类为"远红外线"
远红外线(FIR):50-1,000微米(参见远红外线激光)。
NIR和SWIR有时被称为"反射红外线",而MWIR和LWIR有时被称为"热红外线",这是基于黑体辐射曲线的特性,典型的'热'物体,像是排气管,同样的物体通常在MW的波段会比在LW波段下来得更为明亮。
国际照明委员会分类系统
国际照明委员会建议将红外线区分为以下三个类别:
红外线-A (IR-A):700奈米-1,400奈米(0.7微米-1.4微米)
红外线-B (IR-B):1,400奈米-3,000奈米(1.4微米-3微米)
红外线-C (IR-C):3,000奈米-1毫米(3微米-1,000微米)
ISO 20473分类
ISO 20473的分类如下:
名称            缩写         波长
近红外线    NIR    0.78-3微米   
中红外线    MIR    3-50微米   
远红外线    FIR    50 – 1,000微米   
天文学分类方案[编辑]
天文学家通常将以如下的波段区分红外线的范围:
名称            缩写         波长
近红外线    NIR    (0.7-1)至5微米   
中红外线    MIR    5至(25-40)微米   
远红外线    FIR    (25-40)至(200-350)微米   
这种分类不是很精确,而且和发布的单位有关。这三种区域分别用于观测不同温度的范围,以及不同环境下的空间。
感测器回应分类方案
可以依不同感测器可侦测的范围来分类:
近红外线:波长范围为0.7至1.0 μm(由人眼无法侦测的范围到硅可响应的范围)
短波红外线:波长范围为1.0至3 μm(由硅的截止频率到大气红外线窗口的截止频率),InGaAs范围可以到1.8 μm,一些较不灵敏的铅盐也可侦测到此范围。
中波红外线:波长范围为3至5 μm(由大气红外线窗口定义,也是锑化铟及HgCdTe可覆盖的范围,有时是硒化铅可覆盖的范围)
长波红外线:波长范围为8至12或是7至14 μm(是HgCdTe及微测辐射热计可覆盖的范围)
远红外线(VLWIR):波长范围为12至30 μm,是掺杂硅可覆盖的范围
近红外线最接近人眼可以看到的波长范围,而中波红外线及长波红外线就逐渐的远离可见光谱。其他的定义会依照不同的物理机制(最大发射量的频率或频带,是否会被水吸收等),最新的定义是依照新的技术(常见的硅侦测器在1,050 nm以下可以感测,而砷化铟镓则是950 nm至1,7002,600 nm的范围内可以感测。
依照引用标准的不同,红外线的波长最短约在700 nm和800 nm之间,但可见光和红外线没有明确定义的边界。人眼对于波长700 nm以上的光较不灵敏,因此若用一般强度的光源发射较长波长的光,人眼无法看到。但用一些高强度的近红外线光源(例如红外线激光、红外线LED、或是将可见光移除后的日光),可以侦测到约780 nm的红外线,会被视为红光。强度再高一些的红外线光源可以让人眼侦测到波长1050 nm的红外线,会被视为暗红色的光束。因此会造成周围全暗的情形下,用人眼可以看到近红外线的问题(一般会用间接照明的方式改善此问题)。叶子在近场外线下会格外的明亮,若用红外线滤镜滤除可见光.而有一段时间让眼睛去适应经过红外线滤镜后,特别暗的影像,人眼有可能可以看到在红外线下发光的树叶,也就是罗勃·伍德效应。

红外光的波长范围是多少?具体可分哪几部分?
红外光指的是波长范围从0.7μm至500μm的光,具体可细分为近红外、中红外、远红外光三个区域。 近红外:是指波长范围从0.7μm至2.5μm的红外光。 中红外:是指波长范围从2.5μm至25μm的红外光,是分子结 构分析最有用、信息最丰富的区域 远红外:是指波长范围从25μm至500μm 的红外光。

可见光的波长范围是多少?七色光的波长范围分别是多少?
http://www.zaoxu.com/uploadfile/imgall/184a36acaf2edda3cc6890e95001e93901213f924d.jpg

可见光的波长范围在0.77~0.39微米之间,波长不同的电磁波,引起人眼的颜色感觉不同。770~622nm,为红色;622~597nm,为橙色;597~577nm,为黄色;577~492nm,为绿色;492~455nm,为蓝靛色;455~350nm,为紫色。
扩展资料
可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。
可见光辐射一般指太阳辐射光谱中 0.38~0.76 微米波谱段的辐射,由紫、蓝、青、绿、黄、橙、红等七色光组成。是绿色植物进行光合作用所必须的和有效的太阳辐射能。到达地表面上的可见光辐射随大气浑浊度、太阳高度、云量和天气状况而变化。可见光辐射约占总辐射的45~50%。
参考资料:百度百科:可见光
紫外线,红外线的波长范围是多少?
红外线波长范围0.8-100 微米
紫外线的波长范围在100~400nm

按照波长红外波谱可以分为几个区?分别是哪些?
可分三个区:一个区是红外线与可见光交集区;挨着交集区的是红外线区;最后一个是红外线与无线电交集区。

太阳辐射哪几种光及波长范围?
http://www.zaoxu.com/uploadfile/imgall/1821a4462309f790521685d3b102f3d7ca7acbd5a3.jpg

太阳平日所放出来的光谱主要来自太阳表面绝对温度约六千度的黑体辐射(Black Body Radiation)光谱可见光的波长范围在770~390纳米之间,看不见的波段从770~11590纳米。
波长不同的电磁波,引起人眼的颜色感觉不同。770~622nm,感觉为红色;622~597nm,橙色;597~577nm,黄色;577~492nm,绿色;492~455nm,蓝靛色;455~390nm,紫色。
太阳能的波长分布可以用一个黑体辐射来模拟,黑体的温度为5800K。太阳能波长分布在紫外光、可见光和红外光波段。这些波段受大气衰减的影响程度各不相同。可见光辐射的大部分可到达地面,但是上层大气中的臭氧却吸收了大部分紫外光辐射。
由于臭氧层变薄,特别是南极和北极地区,到达地面的紫外光辐射越来越多。入射的红外光辐射,有一部分被二氧化碳、水蒸气和其他气体吸收,而在夜间来自地球表面的较长波长的红外辐射大部分则传到了外空。
这些温室气体在上层大气中的积累,可能会使大气吸收能力增加,从而导致全球气候变暖和天气变得多云。虽然臭氧减少对太阳能集热器的影响甚微,但温室效应可能会增大散射辐射,并可能严重影响太阳能集热器的作用。
扩展资料
利用太阳光谱,可以探测太阳大气的化学成分、温度、压力、运动、结构模型以及形形色色活动现象的产生机制与演变规律,可以认证辐射谱线和确认各种元素的丰度。利用太阳光谱在磁场中的塞曼效应,可以研究太阳的磁场。
太阳光谱的总体变化很小,但有的谱线具有较大的变化。在太阳发生爆发时,太阳极紫外和软X射线都会出现很大的变化。利用这些波段的光谱变化特征可以研究太阳的多种活动现象。
因此,提高对太阳光谱的空间分辨率和拓展观测波段,可以大大增强对太阳和太阳活动的认识。现在已探测到了完整的,称之为第二太阳光谱的偏振辐射谱。利用第二太阳光谱,又可以进一步开展多项太阳物理研究,也可能成为探测太阳微弱磁场和湍流磁场的有效方法。
参考资料来源:百度百科-太阳辐射
参考资料来源:百度百科-太阳光谱
可见光的波长范围是多少?红外和紫外哪个波长短
可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。
红外波长范围是770~622nm,
紫外波长范围是455~350nm,
即紫外波长短。

近红外光的波长范围是多少?
http://www.zaoxu.com/uploadfile/imgall/18c8ea15ce36d3d53986fb26133487e950342ab01f.jpg

近红外光的波长范围是780~2526纳米。
近红外光分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。近红外区域是人们最早发现的非可见光区域。属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。
近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少。
因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。
扩展资料近红外光谱分析技术包括定性分析和定量分析,定性分析的目的是确定物质的组成与结构,而定量分析则是为了确定物质中某些组分的含量或是物质的品质属性的值。
与常用的化学分析方法不同,近红外光谱分析法是一种间接分析技术,是用统计的方法在样品待测属性值与近红外光谱数据之间建立一个关联模型(或称校正模型,Calibration Model)。
因此在对未知样品进行分析之前需要搜集一批用于建立关联模型的训练样品(或称校正样品,Calibration Samples),获得用近红外光谱仪器测得的样品光谱数据和用化学分析方法(或称参考方法,Reference method)测得的真实数据。
参考资料来源:百度百科-近红外
各种可见光的波长各是多少?
http://www.zaoxu.com/uploadfile/imgall/184ec2d5628535e5ddb16ab3c679c6a7efce1b6260.jpg

1、红光:波长范围:760~622纳米;
2、橙光:波长范围:622~597纳米;
3、黄光:波长范围:597~577纳米;
4、绿光:波长范围:577~492纳米;
5、青光:波长范围:492~450纳米;
6、蓝光:波长范围:450~435纳米;
7、紫光:波长范围:435~390纳米;
可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。
扩展资料:
正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。人眼可以看见的光的范围受大气层影响。大气层对于大部分的电磁辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。
肉眼看得见的是电磁波中很短的一段,从0.4-0.76微米这部分称为可见光。可见光经三棱镜分光后,成为一条由红、橙、黄、绿、青、蓝、紫七种颜色组成的光带,这光带称为光谱。其中红光波长最长,紫光波长最短,其它各色光的波长则依次介于其间。波长长于红光的(>0.76微米)有红外线有无线电波;波长短于紫色光的(
微波、激光、可见光、紫外线、红外线的波长大小
无线电波3000米~0.3毫米(微波0.1~100厘米)
红外线0.3毫米~0.75微米(其中:近红外为0.76~3微米,中红外为3~6微米,远红外为6~15微米,超远红外为15~300微米)
可见光0.7微米~0.4微米
紫外线0.4微米~10纳米
X射线10纳米~0.1纳米
γ射线0.1纳米~1皮米
高能射线小于1皮米
传真(电视)用的波长是3~6米
雷达用的波长在3米到几毫米。

请问可见光的波长范围?不可见光的波长范围?
在整个电磁波范围中,可见光只占极其狭窄的一个小范围:广义的电磁波范围 波长(cm) 频率(Hz)无线电波 >30 <10^9微波30~0.1 1×10^9~3×10^11远红外 0.1~5×10^-3 3×10^11~6×10^12中红外 6×10^-3~2.5×10^-4 6×10^12~1.2×10^14近红外 2.5×10^-4~7.8×10^-5 1.2×10^14~3.8×10^14可见光 7.8×10^-5~3.8×10^-5 3.8×10^14~7.9×10^14近紫外线 3.8×10^-5~2×10^-5 7.9×10^14~1.5×10^15远紫外 2×10^-5~10^-6 1.5×10^15~3×10^16χ射线 10^-6~10^-8 3×10^17~3×10^19γ射线 <10^-8 >3×10^19注:可见光的波长范围在0.77~0.39微米之间。波长不同的电磁波,引起人眼的颜色感觉不同。0.77~0.622微米,感觉为红色;0.622~0.597微米,橙色;0.597~0.577微米,黄色;0.577~0.492微米,绿色;0.492~0.455微米,蓝靛色;0.455~0.39微米,紫色。

可见光的波长范围是多少?七色光的波长范围分别是多少?
可见光波长范围在400~760nm之间,七色光的波长范围是红:770~622nm;橙:622~597nm;黄:597~577nm;绿:577~492nm;蓝、靛 :492~455nm;紫 :455~350nm。
从传播特性看,可见光通信仍属于无线通信的一种,只不过信息的传输载体不是传统的无线电波(频率范围3赫兹~3000吉赫兹),而是频率高达384~769太赫兹的可见光波。它是一种利用可见光波谱作为载体来传输数据的全新无线传输技术,通过给LED灯泡装上微芯片,可控制其每秒数百万次闪烁,其中灯亮代表“1”,灯灭代表“0”,二进制的数据被快速编码成灯光信号并进行有效传输。
特性:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光线则进入到另一种介质中。由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。在折射现象中,光路可逆。
注意:在两种介质的分界处,不仅会发生折射,也发生反射。反射光线光速与入射光线相同 ,折射光线光速与入射光线不相同。
颜色环上数字表示对应色光的波长,单位为纳米(nm),颜色环上任何两个对顶位置扇形中的颜色,互称为补色。例如,蓝色(435 ~480nm )的补色为橙色(580 ~595nm )。
参考资料
人民网.人民网[引用时间2018-5-2]
可见光的波长范围是多少?七种颜色波长范围分别是多少?
红光:中心波长:660纳米;波长范围:760~622纳米;
    橙光:中心波长:610纳米;波长范围:622~597纳米;
    黄光:中心波长:570纳米;波长范围:597~577纳米;
    绿光:中心波长:550纳米;波长范围:577~492纳米;
    青光:中心波长:460纳米;波长范围:492~450纳米;
    蓝光:中心波长:440纳米;波长范围:450~435纳米;
    紫光:中心波长:410纳米;波长范围:435~390纳米。

可见光的波长范围是多少?
可见光波长在400~760nm之间。
紫外光范围波长为10-400 nm。
可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。
紫外光是电磁波谱中波长从0.01~0.40微米辐射的总称,不能引起人们的视觉。电磁谱中波长0.01~0.4微米辐射,既可见光紫端到X射线间的辐射。具有杀菌的功能。
扩展资料:
可见光应用
遥感技术
可见光遥感(visible spectral remote sensing)是指传感器工作波段限于可见光波段范围(0.38~0.76微米)之间的遥感技术。
电磁波谱的可见光区波长范围约在0.38~0.76微米之间,是传统航空摄影侦察和航空摄影测绘中最常用的工作波段。因感光胶片的感色范围正好在这个波长范围,故可得到具有很高地面分辨率和判读与地图制图性能的黑白全色或彩色影像。但因受太阳光照条件的极大限制,加之红外摄影和多波段遥感的相继出现,可见光遥感已把工作波段外延至近红外区(约0.9微米)。在成像方式上也从单一的摄影成像发展为包括黑白摄影、红外摄影、彩色摄影、彩色红外摄影及多波段摄影和多波段扫描,其探测能力得到极大提高。可见光遥感以画幅式航天摄影机的应用为标志的航天摄影测量很有发展潜力。
通信技术
可见光通信技术,是利用荧光灯或发光二极管等发出的肉眼看不到的高速明暗闪烁信号来传输信息的。将要传输的信号连接在照明装置上,在接收端前端加一个光电转换装置,插入电源插头驱动照明装置工作即可使用。利用这种技术做成的系统可实现在室内照明的同时,进行信息传输,因而具有广泛的开发前景。
参考资料:百度百科---可见光    百度百科----紫外光
页: [1]
查看完整版本: 红外线波长范围-红外线波长范围,红外线,波长,范围